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Analytic approach to the evolutionary effects of genetic exchange
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We present an approximate analytic study of our previously introduced model of evolution including the
effects of genetic exchange. This model is motivated by the process of bacterial transformation. We solve for
the velocity, the rate of increase of fitness, as a function of the fixed population size, N. We find the velocity
increases with In N, eventually saturating at an N which depends on the strength of the recombination process.
The analytical treatment is seen to agree well with direct numerical simulations of our model equations.
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I. INTRODUCTION

Recombination of genetic information is an important
strategy employed by biological systems to foster evolution-
ary novelty and to mitigate the adverse effects of deleterious
mutations [1]. It is therefore critical to understand how the
recombination details interact with factors such as mutation
and finite population size so as to determine the overall Dar-
winian dynamics. Theoretical concepts and models can be
directly tested by comparison with laboratory-scale experi-
ments on micro-organisms [2], especially those that can
switch from asexual to sexual reproduction as a function of
controllable conditions [3,4].

There has of course been a great deal of work on both the
effects of the exchange of genetic information and on the
evolution of sex [5-8]. Yet, analytically tractable approaches
which can address the role of finite population size (and the
resultant linkage of different loci) within a full genomic
model are still lacking [9]. For example, most work to date
focuses on systems with just two loci, although this limit is
not at all suitable for the majority of micro-organism sys-
tems. Including recombination in the simple landscape mod-
els [10-12] that have proven useful for asexual evolution
[13] is, we feel, the first step in this necessary direction.

The purpose of this paper is to present a detailed analyti-
cal investigation into a previously introduced [14] model of
recombination motivated by the phenomenon of genetic ex-
change by competent bacteria. Under proper conditions,
many species of bacteria can import snippets of DNA from
the surrounding medium; presumably these are then homolo-
gously recombined so as to replace the corresponding seg-
ments in the genome [15]. Most biologists are convinced that
this process serves to enhance genetic diversity and thereby
allows for better response to environmental challenges faced
by the colony [16,17]. Our work addresses the conditions
under which this type of genetic exchange is likely to be
beneficial.

II. EVOLUTIONARY MODEL

Our model [14] consists of a population of N individuals,
each of which has a genome of L binary genes. An individu-
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al’s fitness x depends additively on the genome x:Ef‘zlSi
with §=0, 1. Evolution is implemented as a continuous time
Markov process in which individuals give birth at the rate x
and die at random so as to maintain the fixed population size.
Every birth allows for the daughter individual to mutate each
of its alleles with probability u, giving an overall genomic
probability of w=pu,L. In addition, we add a process which
mimics the aforementioned method of recombination. At the
rate f,L, an individual has one of its genes deleted and in-
stead substitutes in a new allele from the surrounding me-
dium; the probability of getting a specific S is just its pro-
portional representation in the population. This last
assumption should be valid as long as the distribution of
recently deceased (and lysed) cells is close to that of the
current population; this should be the case whenever the ran-
dom killing due to a finite carrying capacity is the most
common reason for death.

The aforementioned Markov process is much too compli-
cated to be solved exactly. In our previous work, we carried
out a set of simulations to address the effect of finite values
of f,. We showed that at very small population sizes, recom-
bination has little effect, since there is no population diver-
sity upon which to act. At large N, the rate of evolutionary
advance is much higher and again roughly independent of
the recombination rate; this is because the effects of linkage
disappear. This would occur even without recombination, al-
beit at values of N that are unattainably large, even in viral
experiments [11]. Most importantly, the population scale for
the rise is a strongly decreasing function of f;, and hence,
recombination at intermediate N can give a dramatic speedup
of the evolution. This basic result is qualitatively consistent
with recent experiments [3,4] in micro-organism evolution
which demonstrate an increase in the efficacy of recombina-
tion as the population size is increased (starting from small).

In order to approach this system analytically, we wish to
derive an effective equation governing the fitness distribution
of the population as a function of time. In the absence of
recombination, it has been convincingly demonstrated that
this can be accomplished by modifying the naive mean-field
theory (aka the Eigen-Schuster quasispecies equations [18])
by adding a cutoff on the birth rate if the population density
near the leading edge goes below P.=k/N, for some k of
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O(1). The key to this idea, introduced independently in sev-
eral different contexts [10,19-23], is that the major effect of
finite population size is to prevent the leading edge of most-
fit individuals from spreading too far and too fast, as in re-
ality there must be at least one individual (out of N) at a
certain fitness for the equation to make sense. This notion
leads to two different equations for the dynamics of the fit-
ness distribution function, depending on the size of P. First,
if P is larger than P,., we have

dP (1)

1 2
- (x=N)P(1) + ,u[ %Pﬁl(t)

x-1

+(x— 1)(1 - T)Px_l(t) —xPX(t):| +S,. (1)

The first two terms reflect the birth-death process and the
genomic mutation, respectively; the explicit form of the mu-
tation term arises from considering the probability of an
individual with fitness x giving birth (rate ~x), mutating
(~m), and hence going either up [~(1-x/L), the number of
currently bad alleles] or down (~x/L, the number of good
alleles). Alternatively, if P falls below P,, we drop the birth-
death term (x—\)P, in the above equation. As already men-
tioned, it is only important to impose this cutoff on the lead-
ing edge of the population, not at the trailing edge. Finally, A
is a Lagrange multiplier arranged so as to maintain the total
population size at N,

J dx xP.0(P,—P.)

A= .
f dx P .6(P,—P,)

For large N, \ is essentially just the population mean fitness
X and we will use this in what follows.

The last term, S,, reflects the recombination effect. In our
previous work, we verified that at all but the smallest values
of N, it was reasonable to assume that the subpopulation at
some particular fitness x had the same distribution of ‘0’ and
‘1’ alleles at each locus. This assumption means that select-
ing at random an allele from the extracellular medium gives
the site-independent chance x/L of getting S=1 and 1—-x/L
of getting §=0. Following the above logic, this gives

X\x X X
S, = —fSL|:<1 - Z)sz(t) + Z(l - Z)Px(t)

S ot (s
2)

The remainder of this paper is devoted to solving this equa-
tion, using the fact that N is large. Of particular interest will
be the typical scale of f; that is needed to recover the fast
evolutionary advance expected in the no-linkage limit.

III. APPROXIMATE PULSE SOLUTION

We are interested in propagating solutions in which the
fitness distribution function takes the form of a localized
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pulse with a mean fitness and a typical width [10,12]. First,
we will replace the spatial finite-difference equation by a
PDE by taking the continuous space limit. Later, we will
return briefly to the question of when this is quantitatively
valid. For convenience, we will also rescale time by a factor
of L, since as we will see, the natural scale of velocity in the
above equation is O(L). This leads to

x—Xx) 4x
( )+_§_g+§
L L L L

2x7 X—X
+P),c zﬂ_lu_x"'fs( )
L L L

+P—;{M—x+é<x+i—2x—f)} (3)
2| L L L

PX:PX{

In a system with translation invariance, a fixed velocity
pulse would be an exact solution of the governing equation
of the traveling wave form

P (1) = p(x—v1).

Here, such a form will be approximately valid, to the extent
that we can use a quasistatic approximation and treat the
pulse shape as approximately constant in time. Later, we will
discuss why this is valid at small velocity and how it breaks
down at very large N. In detail, we set x=x(¢)+z, v =dx/dt
and obtain

7 4x+du po f
O=p| -+——> -+
L L L L

,[ 2% +2xz+ ) X +z) 5]

+p v+ 2 - 3 +fSL

+p—”{—'u(f+z) +£<2¥+z—2—(f+z)x)}. 4)
2 L L L

We will focus on the specific example of the speed at the
midpoint of the genomic landscape, x=L/2, treating it as a
constant parameter; extensions to other values will be men-
tioned below. Ignoring the dependence of the pulse shape on
the time-dependent x is the technical manifestation of the
aforementioned quasistatic approximation. We can drop
terms of order w/L and f,/L as compared to z/L, since the
width of the pulse will turn out to be much greater than unity
for large N. Finally, we ignore the z dependence in the dif-
fusion constant as this purely mutational piece is smaller
than the leading order (constant) contribution. This then
leads to our basic pulse equation

- 2\ F
O:pzz+pz<v+Fz>+sz, (5)

where F=f +u. The solution to this equation must then be
matched to the solution of the simpler equation that governs
the region past the cutoff where p <P,
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z F
0=p£(U+Fz>+Zp'Z’, (6)
imposing continuity of P and P’ at the cutoff point, x., where
P(x,.)=P,. In the following, we present our results as a func-
tion of P, remembering that P, is a number of order unity
times 1/N, the total population.

IV. WKB SOLUTION—LEADING ORDERS

Our pulse equation is equivalent to a parabolic cylinder
equation and so can be solved exactly and subsequently
matched to the solution past the cutoff [24]. This procedure
would leave us with a complicated special-function equation
for the velocity, which would have to be solved either nu-
merically or via asymptotic approximations valid at large L.
We find it more transparent to derive the needed approxima-
tions directly from our equation. We first rescale our equa-
tion, defining y=Fz/L. In terms of y, our equation reads

1

v+y
0 = ! " 7
yp(y) + A4 ) + A ), (7)
where
A=LIF? (8)

and is assumed large. Given that the highest derivative is
multiplied by the small factor 1/A2, it is natural to write
down a WKB approximation for p,

p(y) = CeMS. )
To leading order
§'=2(-v-y+ V(v +y)>*-y) (10)

and so with the convention that S(0)=0, we obtain
2 L) 2 1
S=-2vy—-y + vky-o Vo+y) -y-v v-3

+ ?ln(n) - ?ln(— 20-2y+1-2V(v+y)?*-y),

(11)

where we have introduced

n=1\1-4v. (12)

C is a normalization constant that needs to be determined by
the integral condition, [>p(z)dz=1. The dominant contribu-
tion to the normalization integral arises from the region of
the peak, where we can use a quadratic approximation
for §, S=~-y?/2v. This gives us the very simple result
C=1/\27Lv.

The velocity is determined by matching to the region to
the right (R) of the cutoff point, which is governed by Eq.
(6). The WKB solution to this equation is

pr(y) = CRe_A(4Uy_2y2) (13)

from which, using the condition pg(y,)=P,, we obtain
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pr=~P. o M40 )+207 2] (14)

Now, since S’(y,) for the precutoff solution does not equal
S’(y,) for the postcutoff solution, there is in general no way
that the two WKB expressions can satisfy the matching con-
dition on the first derivative. The only resolution of this
problem is if the precutoff WKB solution breaks down be-
fore the cutoff, due to the presence of a turning point. That
such a turning point exists is clear from writing the equation
for p (to the left of the cutoff) as a Schrodinger equation,
using a similarity transformation to eliminate the first deriva-
tive term. Writing P(y)=e 2 y(y), the equation for
reads, to leading order,

l l 2 A2 2
—54,[/’+2A2|:y—<5—v):| Y= 2’7 g (15)

From this it is clear that as long as v <1/4, (n>>0), there is
a bound state, with two turning points. For large A, the first
zero of ¢ is very close to the leftmost turning point, and so y,.
lies between this turning point and the zero.

The turning point, y-, can be read off from Eq. (15) as

1-2v-9
==
Si=8"(ys)=7n-1. (16)

This allows us to calculate the amount of exponential decline
from the peak at §'=0 to the turning point S: by just plug-
ging into the previous expression

pbr) A

0 "2

{3v—l+n+§ln(7])]. (17)
Since, as we shall see, the turning point is in general close to
v, this already allows us to calculate the leading order (geo-
metrical optics) expression for the velocity

L — 1-4
lnPc:—2[3v—1+V1—4v+ vln(l—4v)]
2F

(18)

For small v <1, this equation reduces to

2L
3

lnPC=—EU (19)

so that the velocity scales as F?*>(—In P,)'/3, which is what
we obtained previously [10] in a purely mutational model
with very large L. This is consistent with the observation that
at x=L/2, mutation and recombination act essentially iden-
tically, the only difference being the addition wy term in the
diffusion operator. For small v, y- is proportional to v, and so
this extra term does not contribute. The new feature of the
calculation not contained in the previous work is the pres-
ence of a limiting velocity of 1/4. We will discuss the sig-
nificance of this particular value below. It should be noted
that the above formula has the velocity achieving 1/4 at a
finite, though very small value of P, instead of the O value
we would expect. Thus according to this formula, the veloc-
ity is undefined for P_.’s smaller than this value. The further
corrections we derive will rectify this anomaly.
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As is usually the case with WKB, we need to treat the
region close to the turning point y=y. more carefully if we
wish to obtain an accurate formula for the solution. Since
this is the region wherein one has to match to the solution
past the cutoff, this care is indeed necessary. We let the so-
lution p be given as

p= eA(”_l)(y_y*)d), (20)

where we have taken out of p the exponential dependence at
the turning point, S.. Substituting this expression into the
equation for p, it is easy to show that ¢ obeys the equation

Yo )+ py—y)h=0.  (21)

1 rr
m(ﬁ )+ A

The normal method of solution in the turning-point region
ignores the first derivative term thereby resulting in an Airy
equation for ¢. The solution then is

() =C, Ai(y*ﬁ_y>, (22)

where the length scale & is given by
S= (2/\)_2/3 7]—1/3. (23)

With this, it is clear that the first derivative term is irrelevant
as long as 74 is much larger than O(1/A), or equivalently
1-4v<1/A=F?/L. Since L is always taken to be large, we
see that the Airy approach will work for a range of N that
becomes astronomically large. Beyond this point, one must
resort to a much more complicated solution (involving para-
bolic cylinder functions; this pedantic exercise will not be
presented here). We do mention in passing that it is possible
to prove that v will not reach 1/4 until N actually reaches
infinity.

Since 6~ O(A™23), it is clear that the logarithmic deriva-
tive of p is still dominated by AS.. Thus the only way to
achieve a match of the first derivatives is if the leading order
p vanishes. Thus, (y«—y,.)/ & must be close to £=-2.338, the
location of the first zero of the Airy function. Thus gives an

additional fall of e*5+%% to the magnitude of p over the
distance between y. and y,. This is the next order, O(A'?),
contribution to the velocity relation, which now reads

A A\13
InP,.= 5 3v-1+7n+ gln(ﬂ)} + (E) (1-1né&.

(24)
V. FULL WKB SOLUTION

So far, we have calculated the first two orders in the ve-
locity for large L. A full WKB approach should, however,
consider all the terms that do not vanish in the L— o limit.
To achieve such a solution, we have to obtain the physical
optics WKB expression and match to the postcutoff solution.
A full discussion of this procedure applied to a related model
is given in Ref. [25]. Here we will be brief, outlining the
steps without additional commentary. The physical optics
WKB solution is
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G+ =y | 1-2y-20 -2+ =y | s
p=C 3 7 e,

v
(25)

This expression is obtained in the standard manner by just
going to the next order in the WKB expansion. This then has
to be matched to a more accurate solution near the critical
point. Taking into account the modification due to the small
first derivative term in Eq. (21), we can derive

p=Ci[1-2A(y - y*)Z]Ai<— y_—gy* + 2Ab‘2) . (26)

The matching yields

27w 81
C = CTEAS*. (27)
7
We now have to match this to the postcutoff solution, which
has a logarithmic derivative (with respect to y) of —4A(y,
+v) to leading order. As noted above, this fixes the location
of y,

=ye— §0+2A8 - ———
Ye=yx= &0+ Al-7)
1 1

=y*—§o5+m—/\(1—_n), (28)

where the third term comes from the shift in the argument of
the Airy function, and the last term from the small distance
from the zero of the Airy. The condition that p(y,) =P, then
gives

1
2An A(l- 77)D'
(29)

1 1
pP.=C; Ai'(fo)A(l—_n)exp(Si[ - &b+ —

Putting this all together gives us our final expression for the
velocity

A 2 A 1/3
InP,= 5{311 147+ %m(n)] + (E) (1= )&

167 1/3Ai'(§0)) 1-7
+ln<[A2F3} —(1_7]) +1- 2 (30)

or, spelling it out in all its glory,

L —— 1-4v
lnPC=F{3v—l+\rl—4v+ 1 1n(1—4v)}

(L)'“(‘ —V1-4)§)
4F* (1-4v)"

1] e
L* | (1-40)"5(1 =1 -4v)

—
1-vV1-4
2V1 —4v
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FIG. 1. (Color online) Comparison of the analytic approxima-
tion for the velocity at X=L/2 as a function of the cutoff P, Eq.
(31), (“Third Order”) with the results of direct simulations of the
time-dependent spatially discrete equation, Eq. (1). In addition, we
show the lower order approximations, Egs. (18) (“First Order”) and
(24) (“Second Order”). The parameters employed are L=1000,
F=2.1.

We compare our current expression for the velocity with nu-
merical simulation data obtained by solving the original
time-dependent PDE and measuring the pulse speed when
the mean fitness passes L/2. The results are presented in Fig.
1, where we, in addition, display the lower order approxima-
tions, Egs. (18) and (24). We see that these additional con-
tributions are indeed significant, even for the relatively large
L employed.

One interesting fact that emerges from this analysis con-
cerns the extent to which the selected velocity depends on
the nature of the imposed cutoff. Recall that our cutoff
dropped the entire birth-death term in the region past P,.
Since the first two terms in Eq. (31) arose simply by requir-
ing that p approach zero at the cutoff, these would be un-
changed had we employed a different treatment, say drop-
ping only the birth term. This is also true of the O(InL)
piece. Only the O(1) contribution is modified. In detail, if we
were to drop only the birth term, the distance of y. to the
zero of the Airy function is modified, and is now
—1/(A4-275-4v) so that the velocity-cutoff relation now
reads

A 772 <A>l/3
InP,=—|3v-1 - — -
nP, 2[0 +77+2n(77)}+ e (1-né&

167 |7 Ai'(&)
+1n A -
A°F (V4 -275-4v)
1-7 1-7
Va-2p—dv 27

(32)

In Fig. 2, we plot this modified velocity together with the
original. We see that the general features of the two models
are similar, and that the modification results, for a given v, in
an effective decrease in P, by a factor of about 10. This
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FIG. 2. (Color online) Velocity vs the cutoff, P., when only
birth and not death is excluded beyond the cutoff. For comparison,
the velocity from the original model with both birth and death ex-
cluded beyond the cutoff, is presented as well. The results of simu-
lation (circles) as well as the analytic WKB prediction (lines) are
displayed. Parameters are L=1000, F=2.

could be absorbed in our phenomenological parameter k re-
lating P, to the N in the stochastic model.

Let us return to the scaling implied by the analytic for-
mula. From the above, it is clear that the large N limit in
which v asymptotes to 1/4 is defined by

N>N,, ~ el6F), (33)

This is a very strong function of F; one can reach the large
population limit velocity at much smaller size by making a
relatively modest increase in F. In this model, this behavior
is what is responsible to the efficacy of recombination in
improving the rate of evolution. Essentially, fitness improve-
ment rates will be limited by clonal interference as N be-
comes moderately large; different beneficial mutations arise
in different lineages and cannot be jointly selected for. This
can only be overcome if the variance of the population is so
large that all different combinations of multiple mutants are
present simultaneously or if recombination succeeds in col-
lecting these different mutations in a common line. This re-
duces the needed width, which is proportional to In N, by a
inverse factor of F2.

Now, the fact that mutation and recombination act simi-
larly (adding up to give F) is a feature of the fact that we
have chosen to do our calculation at the symmetric point X
=L/2. If the mean fitness is above the midpoint, the effects
of w and f; diverge. In particular, if we return to the original
pulse equation (4), we see that there is a drift term propor-
tional to w that increases with X; this term is merely the fact
that in this part of the landscape most mutations are detri-
mental. Crucially, there is no such term proportional to f
arising from the recombination process. Thus, one cannot, in
general, get to large positive velocity by increasing the mu-
tation rate; the bias will win out. One must resort to a recom-
bination strategy; there will be no recombination load as long
as we assume (as we have) that genes are entities that cannot
be broken apart by recombination.
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Looking more closely at what happens away from the
symmetric point x=L/2, for simplicity we drop the mutation
term and concentrate solely on the recombination. There is
now an additional term Fz(1-2a)/Lp"(z)=(F*/L*)p"(y)
X[y(1-2a)/F] in the steady-state equation. The calculation
is similar; note however that now the equation is no longer a
parabolic cylinder equation and no exact solution is possible;
nonetheless our WKB treatment still works. Qualitatively the
picture is the same. The additional term in the equation is
irrelevant at small velocities, becoming more important as
the velocity increases. The most interesting question is what
happens to the limiting velocity. The limiting velocity is
given in general by the point where dS./dv diverges. A
straightforward, but messy, calculation yields the result

Uoo=a(l—a)< )(1—\’1—2(1—263)/17), (34)

1-2«a
where a=Xx/L. Note first that this is the “binomial” answer,
a(l—a), times a correction factor which is a function of the
ratio F/(1-2a). For large F, this correction factor ap-
proaches unity, and we recover the “binomial” answer. This
is consistent with our observation [23] that the effect of the
recombination is to drive the system to the binomial distri-
bution. For a>1/2, the limiting velocity is less than the
binomial result, whereas for a<<1/2, it is always greater. For
F<2(1-2a), our formula does not predict any limiting ve-
locity. This just means that the velocity is controlled by the
right boundary at y=1-« and not by the cutoff. We have
verified our formula numerically for a number of different c.

It is worthwhile considering the origin of this deviation
from the binomial answer for infinite N, in light of the easily
verified fact that the binomial distribution with velocity
a(l—a) is an exact solution of the fully time-dependent
equations in the absence of a cutoff, for any value of F. The
answer is that we are seeing an effect of the breakdown of
the quasistatic approximation for large v’s, of order 1 in our
scaling. Thus, when a<<1/2, when the dynamic interface is
accelerating, the velocity does not have a chance to reach the
quasistatic answer before it has to move on, and hence the
dynamic velocity is less than the quasistatic prediction. Simi-
larly, for a>1/2, the interface is decelerating, and hence the
velocity is greater than the quasistatic prediction. Only when
v<<1 is the quasistatic approximation guantitatively valid;
this limitation also emerges if one just estimates the terms
being dropped in the original pulse equation. We do not
know at present of an analytical method which can go be-
yond this limitation.

A last issue that is worth mentioning is the use of the
space continuum approximation for our evolution system
originally defined on a lattice. We have shown elsewhere that
lattice effects can become important if the effective diffusion
constant (here equal to F/4) is small. Out interest here is in
the effect of making F fairly large by having a significant
recombination rate; in this range, the continuum approxima-
tion is quantitatively justified. This can, of course, be seen a
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posteriori by the agreement between the calculations and the
numerical velocity data.

VI. DISCUSSION

This paper has been devoted to an analytic treatment of a
previously developed model for evolution at finite population
size with both mutation and one specific type of genetic re-
combination. Our results indicate that the rate of evolution
can be dramatically speeded up by recombination as we ap-
proach the answers that would pertain in the infinite popula-
tion size limit, where all genomes are almost immediately
populated and selection alone accounts for the (unnormal-
ized) speed of L/4. If mutations were strictly unbiased, simi-
lar effects could be had by a greatly increased mutation rate.
But, as soon as we move up the fitness landscape toward the
eventual equilibrium state, deleterious mutations are more
common and increasing the rate increases the mutational
load. In our model, there is no recombinational load.

In order to see the effects of recombination, our basic rate
of recombination events per gene, denoted by f, must be
order VL/In N. In comparing to real systems, L is the number
of genes contributing to possible fitness changes in a novel
environment and N is, of course, the population size. The
rate itself is measured with respect to the differential birth
rate increase due to the fixation of one beneficial allele. Our
feeling is that it may be premature to try to compare this
theory quantitatively to any specific set of experiments, but
nonetheless the basic trends should be verifiable in micro-
organism experiments.

Future work must address a number of points that are
absent in our simple model but presumably present in the
real microbial world. First, is the role of lethal mutations in
biasing the genetic composition of the environment; some
deaths are due to bad genes and these could be picked up by
DNA importation. This is a form of recombination load, i.e.,
a bias toward the negative in the recombination process. A
second issue along the same lines concerns the fact that ho-
mologous recombination may occur in the middle of a cod-
ing sequence and will bring together incompatible fragments.
In our model, this would appear as epistatic interactions
among the sites. Finally, our analytic method assumes we
can write down an equation solely in terms of the phenotype
distribution P,(z). This clearly breaks down at small N where
different alleles have very different population distributions
and we do not as yet have a method which can reach into this
region.
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